DESIGN AND ANALYSIS OF RAILWAY UNDER BRIDGE (RUB) BY USING BOX PUSHING METHOD

M.A.Rahman¹, G. Raju²

¹Associate Professor, ²Student of M.Tech, Department of Civil Engineering, Guru Nanak Institutions, Hyderabad, Telengana.

ABSTRACT: The project entitled analysis and design and execution of cross traffic works in railways using box pushing technique (RUB), illustrates about the work to be carried out for the widening of existing roads using box pushing techniques for rail under bridges. It also explains about the methodology involved in execution of box pushing technique. The design will be carried out as per Indian standards, particularly Indian railways standards, IRC, IRS, and IS CODES. In which the design of major components thrust bed, precast box used for the widening are done as per IRS codes. The design of pre cast box is done using STAAD pro, it also includes the layout of reinforcement details of two important structures used in this method apart from conventional method i.e., thrust bed (main bed and auxiliary bed), pre cast box. In railways whenever there is a need to make a underpass ,either for canal crossing, RUB'S(Rail under bridges), programme of widening existing railway culverts etc.BOX PUSHING TECHNIQUE is used. Since the work has to be done without interruption to rail traffic, box pushing technique is largely favoured in comparison to conventional methods. Present day Intensity of Traffic, both Rail & Road due to the fast development, is very heavy it cannot the disturbed, for construction of under bridges or Canal Crossings, drainage etc by conventional i.e. open cut system. Box Pushing Technique is developed where in R.C.C. Boxes in segments are cast outside and pushed through the heavy embankments of Rail or Road by Jacking.

Keywords: Cross Traffic Works, Box Pushing Technique, Rail Under Bridge (RUB), IRC, IRS, IS Codes.

I. INTRODUCTION

1.1 General

I. INTRODUCTION

In railways whenever there is a need to make a underpass ,either for canal crossing, RUB'S(Rail under bridges), programme of widening existing railway culverts etc..BOX PUSHING TECHNIQUE is used. Since the work has to be done without interruption to rail traffic, box pushing technique is largely favored in comparison to conventional methods. Transportation is one of the main objects in the infrastructure of a developing country like India. Most of the Indian intra national transportation is done by railways. Railways were first introduced to India in 1853 from Bombay to Thane. In 1951 the systems were nationalized as one unit, the Indian Railways, becoming one of the largest networks in the world. Comprising 115,000 km (71,000 miles) of track over a route of 65,000 km (40,000 miles) and 7,500 stations. Sixteen Zones in 2003. Each zonal railway is made up of a certain number of

divisions, each having a divisional headquarters. There are a total of sixty-eight divisions.

1.2 Comparison with Other Conventional Methods

Box pushing technique is much better when compared with the other conventional methods like open-cut systems, as the open-cut method requires excavation, digging, placing etc., which causes inconvenience to the movement of vehicles and traffic problems., but whereas the box pushing technique does not make any disturbance to the existing traffic but also provides widening of existing road within a short period of time.

1.3The Need of Box Pushing Technique

- Present day Intensity of Traffic, both Rail & Road due to the fast development, is very heavy it cannot the disturbed, for construction of under bridges or Canal Crossings, drainage etc. by conventional i.e. open cut system.
- Box Pushing Technique is developed where in R.C.C. Boxes in segments are cast outside and pushed through the heavy embankments of Rail or Road by Jacking.

1.4 OBJECTIVES

In the present dissertation work on ANALYSIS & DESIGN OF BOX PUSHING TECHNIQUE. Analytical models of BOX PUSHING TECHNIQUE are prepared and analyzed by using STAAD PRO software. In the current study, work is carried-out on the methodology of the box pushing technique, which provides widening of existing RUB at Chicksugur, Raichur dist.

II. METHODOLOGY

- 2.1 GeneralExcavation
 - Casting of Thrust Bed
 - Fabrication of Front and Rear shield
 - Box Casting and placing
 - Pushing-shifting-pushing operation
 - Miscellaneous works
 - Precautions

2.2 Box Pushing Operation

• To push precast box segment, reaction is obtained from thrust bed. For this, screed is dismantled at pin pocket location, pin pockets are cleaned, pins are inserted and Hydraulic Jacks- 8/10 nos. are installed between pins and bottom slab of the box with packing plates and spacers.

- A 20mm thick plate is provided, butting against bottom slab of box, in front of the Jacks to avoid damage to concrete surface.
- Nail anchor plates are removed and earth is manually excavated in front of cutting edge in a way to get annular clear space of 300mm all-round.
- Anchor plates are refixed in position and uniform pressure is applied to the jacks through Power Pack.
- After complete push (maximum 300mm) jacks are released, protruding nails are gas cut/driven and jacks again packed with packing plates and spacers.
- Process is repeated till front box is pushed to required position.
- Then 2nd box segment is slewed and brought in position behind 1st box segment.
- 8 nos. Jacks, each of 200 Tons capacity, are housed between two box segments in addition to 8 nos. Jacks already provided between thrust bed and 2nd box segment.
- 3 nos. Jacks, each of 100 Tons capacity, are provided in 3 slots made in each sidewall to facilitate correction of line and level of box during pushing.
- Earthwork is now done in front of 1st box segment and it is pushed. Protruding nails are gas cut/driven and anchor plates are refixed in position.
- Thereafter, jacks housed between two box segments are released and then 2nd box segment is pushed.
- Process is repeated till both the box segments are pushed to required position.
- Cutting Edge is dismantled & front face of 1st box segment is cast in plumb.

2.3 Stages in Execution of Work

- 1. Excavation for thrust bed and auxiliary bed.
- 2. Concreting of thrust bed & pin pockets.
- 3. Casting of box segments.
- 4. Protection of track & embankment.
- 5. Arrangement of adequate capacity jacks with power pack.
- 6. Pushing operation.
- 7. Construction of Wing wall/Toe wall/Return WALL

2.4 Major Components of Rub:

- 1. THRUST BED
- 2. PRECAST BOX
- 3. FRONT SHIELD
- 4. REAR SHIELDS
- 5. PINS POCKECTS
- 6. HYDRAULIC JACKS

III. RESULTS AND DISCUSSIONS

3.1Analysis and Design of Thrust Bed

3.1.0 Introduction

This report contains design of Thrust Bed for precast RCC single box to be pushed inside the embankment for "Proposed RUB, at Chicksukur Railway station, Near

Sakthinagar in Raichur –Karnataka district", on either side of existing RUB with Box of size 7.5 x 5.5 mt at Railway Km 205/200-300 Phase –I

3.1.1 Design Data					
Rail level	=	108.9	07		
Formation level	=	108.2	32		
Size of box (2)	=	7.500	x5.650		
Top of bottom slab of box	=	101.2	57		
Top of box	=	107.6	57		
Top of thrust bed (top of s	creed) =	100.50	07		
Earth cushion (from top of	f box) =	0.575			
Thickness of top slab	=	0.750			
Thickness of bottom slab	=	0.750			
Thickness of wall: outer w	alls=	0.750			
Out to out width of box	=	9			
Out to out height	=	7.150			
Total pushing length	=	22			
No of segments	=	2			
Length of first and second	segment	s = 11.	00		
Thickness of thrust bed	=	0.750			
Concrete grade	=	M25			
Steel grade Fy	=	500			
Bulk density of soil	=	2.10	t/mt ³ ,	taken	on
conservative					

3.1.2 Dead Loads

3.1.2.1 Vertical Loads

As normally in railways, total weight of 6750kg/m including track str.is to be taken

Hence for total no of tracks	=1x6750	=6750 k	kg∕m
Total weight of P.Way on to	p of box $unit =$	6/50x1	l (length
of box unit) =	74250 kgs	=74.251	Γ
3.1.2.2 Earth Filling Cushior	1		
So total UDL on top of slab	of box will be	=1.208x	:9(o/o
width) x11 =	= 119.54T		
Hence Total Weight at Top =	= 74.25+1	19.54	
=	= 193.797	Γ	
Load on Bottom Surface=loa	ad on top +self-v	weight of	f box
Weight of Box =9.00X0.7	50X2X2.50	=	33.75
Weight of Vertical Walls =	5.650X1.50X1X	K2.5=	21.19
Haunches =4.00X0.1	5X0.075X2.50	=	0.11
Total Weight per Meter		=	55.05
Weight of One Segment =	55.05X11	=	605.5T
Load on Bottom Surface =	193.79+605.55	=	799.3 T

3.1.2.3 Earth Pressure

From bottom of the box

Soil parameters $\Theta = 28.00 \ \delta = 9.33$

Active earth pressure co-efficient ka 0.3344

[B] EARTH PRESSURE [Ref: cl – 5.7 of IRS code for sub str. & Foundation]

Ka —	cos²(€	$(\theta - \alpha)$
Ku –	$\cos^2 \alpha \cos(\alpha + \delta) \left[1 - \frac{1}{2} \right]$	$+\frac{\sqrt{\sin(\Theta+\delta)-\sin(\Theta+i)]}}{2}$
		$\sqrt{\cos(\alpha-\delta)-\cos(\alpha-i)}$
$\cos (\Theta - \alpha)$) =	0.7797
$\cos(\alpha + \delta)$	=	0.9868
$\sin(\Theta + \delta)$	=	0.6064

sin ($\Theta + i$)	=	0.4694		
$\cos(\alpha - \delta)$	=	0.9868		
$\cos(\alpha - i)$	=	1.0000		
Ka=0.3344				
Hence earth pressure at to	p of box	=0.58x0	.3344x2.1	0
_	-	=0.404 t	/sq.mt	
Earth pressure at the botto	om of box	: ht	=0.58+7.	15
-			=7.73	
Earth pressure at bottom of	of the box	=0.3344	x2.10x7.7	3
		= 5.43t/s	sq.mt	
Hence total earth pressure	e on wall	=0.50(0.	40+5.43)	x7.150
		= 20.840)t/m	
Hence total load on wall		=20.840	x11.00	
		= 229.24	ŧΤ	
3.1.2.4: Live Load Surcha	arge: Ref I	Design O	f Box Para	a: 3.5
For two tracks pressure at	top	= 1142.5	51 kg/sq.m	nt
For two tracks pressure at	bottom	= 675.29	kg/sq.mt	
Hence total load		= 0.50(1	.14+0.68)	x7.150
		= 6.499	t/m	
Hence total load on wall		= 6.499x	x11.00	
		= 71.49	Т	
Live load for box: as at the	ne time of	pushing,	there wil	l not be

Live load for box: as at the time of pushing, there will not be any train

3.1.2.5Total Pressure on Box Segment

THE LOARDS BELOW ARE FOR 1 UNIT OF BOX.On top surface $=193.79 \times 1.00$ =193.79On bottom surface $=7.99.34 \times 1.00$ =799.34On two walls=2.00x229.24x1.00=458.47Live load surcharge=2.00x71.49x1.00=142.97Live load of train: one train=1.00x131.00x1.00=131.00=131.00

Total load of train = 193.79+799.34+458.47+142.97+131 = 1725.58

Total force for box = $1725.58 \times 1.00 = 1725.58$ Taking angle for friction between soil and concrete = 25Jacking force required to overcome friction as per soil mechanics

Handbook = Tan (25)

Tan (25) = 0.466

Hence total Jacking force required = 1725.58×0.466 = 804.12

As suchtwo boxes are to be provided, hence

Pushing force for which thrust-bed is to be designed

 $= 1.00 \times 804.12 = 804.12$

On thrust bed for jacking operation use total 6.00 No's of pockets in a Row.

Hence Max force per pocket = 804.12/6.00 = 134.020

The jacking force will be resisted by weight of thrust bed and partly by thrust wallIf due to any reason jacking force required is more, in that case,To share the jacking force in two rows of keys, at the time of jacking two rows of pins will be provided; hence force per pin will be half in that case. 3.1.3.0Thrust Bed and Thrust Wall

3.1.3.1 The thrust will be provided as shown in the fig.

Thrust bed has been designed in such a manner that, it can accommodate 1st, Box and after that with provision of pushing, there will be auxiliary thrust. Bed for another two boxes

1.15m for cutting edge+Box+0.90 Jack+0.5 pocket+0.25

gap+0.7 thrust wall = 14.500 m LENGTH OF THRUST BED = 14.500 METERS WIDTH OF THRUST BED = 10.200 METERS No. OF POCKETS = 57.000 on Main th. Bed=42.00 + 15.00 on auxi. THB SIZE OF POCKET: At Main th-b= $0.500 \times 0.50 \times 0.14$ At Auxiliary th-bed = $0.500 \ge 0.50 \ge 0.14$ NO OF KEYS = 2.000 no's 3.1.3.2 Weight of Thrust Bed Volume of concrete: Main bed=14.50 x 10.20 x 0.75 =11.93 Volume of concrete: Axui-bed =50mm screeding =14.50 x10.20 x 0.05= 7.40 Thrust wall: 1 $= 1.20x \ 10.20 \ x0.70 = 8.57$ $=1.20 \times 10.20 \times 0.70 = 8.57$ Thrust wall: 2 Keys $= 2.00 \times 10.20 \times 0.36 = 7.34$ Less pockets $=-57.00 \ge 0.14 = -7.84 = 26.39$ Total weight of bed in $T = 126.39 \times 2.50 = 315.99$ Resistance offered by bed $=315.99 \times 0.466 = 147.25$ Additional resistance required=804.12 - 147.25 = 656.87 T This additional resistance will be available from thrust wall provided at rear of thrust be, the resistance available from keys is also calculated.

3.1.3.3Passive Pressure on Thrust Wall

Thrust wall at end has been provided Passive earth pressure co-efficient for vertical face of wall:

Soil available at bottom of box is soft to Hard rock hence take, soil property as below

Passive earth pressure co-efficient,

 $\Phi = 40.00, \alpha = 13.33, i = 15.00$

$$Kp = \frac{\cos^{2}(\Theta + \alpha)}{\cos^{2}\alpha\cos(\alpha - \delta)\left[1 + \frac{\sqrt{\sin\left[(\Theta + \delta) - \sin\left[(\Theta + i)\right]\right]}}{\sqrt{\cos\left(\alpha - \delta\right) - \cos\left[(\alpha - i)\right]}}\right]^{2}}$$

$\cos(\theta)$	=	0.7660
$\cos(\Theta + \alpha)$	=	0.7660
$\cos(\alpha)$	=	1.0000
$\cos(\alpha - \delta)$	=	0.9730
$Sin(\Theta + \delta)$	=	0.8021
Sin(θ)	=	0.6428
$Sin(\theta + i)$	=	0.8192
Cos(α - i	=	0.9659
Passive earth	pr. Co-eff	Ficient $Kp = 2$

Passive earth pr. Co-efficient Kp = 22.45

Passive pressure with cohesion is given by $Pp = 0.5 \text{ x W x HxH x Kp} + 2 \text{ c H [Kp]}^{1/2}$

Hence advantage of adhesion at two locations can be taken.

[1] PASSIVE RESISTANCE AVAILABLE FROM THRUST WALL

W=1.80 T/cu.mt, bulk density taken conservatively

H for wall in front =i.e. only one thrust wall

H for end wall at end of the Bed= 2.00 [0.80 = 1.20 below the Bed]

Kp= 22.45 [wall above the Bed 7th bed]

L for end walls only = 10.20 mt

C= Kg/sq.cm Ref: Soil report at th-bed level

C= T/sq.mt 0.5xwxhxhxkp+2ch (kp)^{1/2} $P_R =$ passive pressure at rear all =824.49 A=pass pressure at intermediate wall=0 B=A+B= passive pressure from walls = 824.49------ (I) (2) PASSIVE PRESSURE AVAILABLE FROM KEYS: Passive pr. with cohesion is given by 0.5xwxhxhxkp+2ch (kp)^{1/2} Pp= Ŵ= 1.80T/cu.mt H= 0.60 22.45 Kp= 10.20 L= Passive pr.at the bottom of the bed = $(kp \times 0.75)$ 1.80x22.45x0.75=30.31T/sq.mt = Passive pr.at the bottom of key =(kpxwx1.35)22.45x1.80x1.35=54.56T/sq.mt = Passive pr.at the bottom of the key =54.56 Hence average pr. 42.44 = (30.31+54.56)/2 =Total passive resistance 42.44x10.20x0.60 259.71 = Such 3 keys are provided below the thrust bed. Passive resistance available 2.00x259.71 = 519.43T---- (II) Total Passive Resistance Available = From Thrust Bed +Keys = 824.49+519.43=1343.91>656.87 SO SAFE This force will be offered by passive resistance from wall, as well as keys and it will act at 1/3 of thrust wall 0.33x2.00 0.67mt 3.1.3.4Design of Thrust Wall As Max capacity of the thrust wall is 829.49 T Max force for which wall is to be designed will be 824.49T Max force to be resisted by thrust wall 824.49 = Hence forces per meter will be 829.29/10.20 = 80.83 = The equivalent passive force diagram will have the magnitude of above Hence the ordinate of the resisting force will be 1/2 x base x height=80.83= Hence base 80.83 = And ordinate at bottom of the thrust bed 32.33 = Ordinate at de away from bottom of thrust bed 58.20 = Hence max. BM.in the thrust wall taking section at the bottom of the thrust bed : Rectangle+Triangle $= (32.33 \times 1.20 \times 1.20 / 2.00) + (0.50 \times 48.50 \times 1.20 \times 1.20 \times 0.67)$ = 46.68Considering jack load as load due to earth pressure, design factor will be 1.7 Hence DESIGN BM=1.70x46.48=79.354T-m =793.49 KN-m For M20 concrete effective depth required

 $= \{(793.49x1.306)/(2.76x1000.00)\}^{1/2}$ 536.19 mm = Effective depth of wall = 700.00-50.00-12.5= 637.50mm 3.1.4.1 Reinforcement Calculation BM = 793.49 KN-m Effective depth= 700.00-50.00-10.00 640.00 = To calculate Mu for given percentage of steel 500.00, So 0.87 Fy 435.00 Fy = = = 0.51, sopt/100 Pst 0.0050 0.501x (1000.00x640.00)/1000 Hence Ast= =3207.63 sq.mm Fck 25.00.,Fy/fck= 20.00 = 1000.00 В = De= 640.00 Hence Mu=0.87XFyXAsX (1-1.1XFyXAs)/(Fckbd) 0.87xFy xAs =0.87X500.00X3207.63=1395319.17(1) 1.10X500.00X3207.631.1Fy As /Fckbd=35.00x1000.00x640.00=0.0788 Hence 1-0.0633 =0.9212 (2) x (2)xd =1395319.17x0.92x640.00/10.20=822.67 Hence Mu=0.87XfyX(Pt/100)x(1-1.1xFy/fck(pt/100))xbd Mu/bdbasedonpst=435.00x0.0050(1.00- $1.100 \times 20.00 \times 0.0050) = 1.94$ Mu based on BM = (793.49X100000)/(1000X640X640)=1.94As both sides are equal pst calculated is OK Pst required =0.501Hence area of steel=100x64x0.00501=32.08 Hence provide 25mm bars at 140 c/c through steel =35.06 cm²>32.08 cm² Ast provided Pst provided =0.54798% Inside the wall. Provide 12mm bars at 140 c/c, through steel Ast provided = 8.08 cm^2 3.1.4.2Designfor Shear in Thrust Wall Max shear in thrust wall will be at effective depth away from bottom of thrust bed=1/2x (80.83+58.20)0.56=38.93T Check for Shear: Maximum Shear Forces Are Max SF in wall = 38.93 T Ultimate shear = 1.7x10xV = 661.79 KN Shear stress Vs/bd=661.79/1000x640 = = 1.03 For M20 grade concrete, from table 15.IRS concrete bridge code

Table 3.Table	15 of IRS	Concrete	Bridge Code
---------------	-----------	----------	-------------

% of steel	Тс
<0.15	0.31
0.25	0.37
0.50	0.47
1.00	0.59
2.00	0.74

Tc=0.4300 for Pst=0.5479

Vc=0.4	3x1000x640	=	275.20
bxSv	$=1000 \times 150$	=	150000

(V+0.4-SVc) =1.43 - 0.43 =1.00 0.87xFy =0.87x415.00 361.05 = =150000x1.00/361.05= 417.13 Asv Hence provide 10mm rings connecting 2 bars 150 c/c As main bars are provided at 140 c/c no's of legs in 1 m strip=7 Hence area of shear steel provided will be =7.00x78.54 =549.78 549.78 which is >417.13 Hence safe 3.1.5 Design of Thrust Bed 3.1.5.1 Data Thickness of thrust bed 750.00mm = Width of thrust bed 10200.00mm = Concrete grade M25 = Jacking force required = 804.12T Actually, this is a temporary structure, hence it can be designed without load factors, or less factors can be used, however, as per IRS code following been assumed. FORCE PER METER OF BOX loads x factor On top surface 193.79x1.40 271.31 = On bottom surface 799.34x1.40 = 1119.08 On two walls 458.47x1.70 = 779.40 Live load surcharge 142.97x1.70 243.05 _ Live load of train 131.00x1.70 = 222.70 Total Load = 271.31+1119.08+779.40+243.05+222.70 2635.54 Factored friction force will be = 2635.54x0.466 1228.16 = Hence factored force per pin wills be= 1228.16/6 204.69 3.1.5.2 Jacking force: will be applied against jacking pin and jacking pin will transfer the load in the side pocket, as a couple take eccentricity 0.3m Jacking pins provided in the bed in a row are=6.00 Jacking force per pin 204.69 T = Eccentricity = 0.3000 Max BM for thrust bed 1228.16X0.300 = = 368.449 T m Hence factored moment = 1.00x10x368.45 3684.49 KN-m = Hence moment per meter will be = 3684.49/10.20 = 361.22KN-m Effective depth of bed 750.00-87.50 = 662.50 = 3.1.5.3 Reinforcement Calculation: BM 361.22KN-m = Effective depth 750.00-75.00-= 12.50 662.50 To calculate Mu for given percentage of steel =500.00, so 0.87 Fy Fy = 435.00

Hence Ast	=	0.237x	
(1000x662.50)/100	=	1572.8Sq.mm	
Fck	=	25	
Fv/Fck	=	20	
B	=	1000	
De	=	662.50	
Bd^2	=	438906250	
Hence Mu	_	0.87 xFvx As[1]	
$1 1 \text{ y Evy } \Delta \text{ s} /\text{EckBd}$	—	0.07 ALYANS[1	
0.87 x Evy Δ s	$-0.87 x^{4}$	500x1572 79	
0.07 AI YAAS	=0.07X	68/16/ 8(1)	
	- -1 10 ₂ 4	004104.0(1)	
1 1 v Ev v A a/Eakhd	-1.10x -25x10	00x1372.79	
1.1XFY XAS/FCKDU	=23X10	0.0522	
Harras 1.0.0622	=	0.0522	
Hence 1-0.0633	=	0.94/8(2)	
(1)x(2)xd =	684164.85x0.9	5x662.50/1.0E06	
Moment of resistance	=	429.59>361.22	
Hence OK			
To calculate Mu for given pe	ercentage of ste	el	
Fy	=	415	
so 0.87Fy	=	361.05	
Pst	=	0.2374,	
soPst/100	=	0.0024	
Fck	=	25	
Fy/Fck	=	16.60	
В	=	1000	
De	=	662.50	
Bd^2	=	438906250	
Hence Mu	=	0.87xFv	
x(Pst/1000)x[1-1 Fv/Fck(Pst/1000)x[1-1 Fv/Fck(Ps	est/100)]bd	olo / III y	
Mu/bd^2 based on Pst	30/100/]00		
$-361.05 \times 0.0024[1.1.1 \times 16.60]$	$0 \times 0 00241 = 0.82$)	
$M_{\rm H}/{\rm hd}^2$ based on BM	070.0024j=0.02		
$-361.22 \times 100000 / (1000 \times 64)$	52 50X662 50)-	-0.82	
= 301.22X100000/(1000X002.30X002.30)=0.82			
As both sides are equal PSUC	o 2274	L	
Provide percentage of steel=	0.2374	- 70	
Hence area of steel=100x66.	25x0.00237=1:	5.75	
Along with this steel there	e will be axia	I tension due to	
couple, formed at the pin p	ocket location,	this will also be	
taken care by additional st	teel for pure t	ension inside the	
thrust bed.			
3.1.5.4 Tension,	taken l	by concrete	
Tension Taken By Concret	e Will Be=Tot	al Width Of The	
Bed Thickness Of Thrust Be	d Below Pocke	t X6.1kg/Cm ²	
Area of thrust bed $=1020x75$	=76500		
Less area of pockets=-1x6x2	2750 =-1650	0	
Total area of plain concrete	will be =60000		
Tensile force taken by concr	ete		
$=60000 \times 6.1/1000 = 366 \text{ T}$	ref: IRC21, cl3	03.3)	
Total required force $=1228$	3.16T factored	force, with load	
factors as per IRS		,	
Hence steel required for force	e = 1228.16 - 366	5=862.16 T	
Hence area of steel required	for axial tensio	n	
$= 862 16 \times 1000 \times 1 \times 10/(0.87)$	(415) = 238.79	cm^2	
Hence area required per meter will be $238.79/10.20-23.41$			
This steel will be divided at top and bottom of the thrust had			
As eccentricity from top is		0 275	
Hence tension steel at top	_	0.275 0 $175/0.75 \times 23.11$	
nence unsion such at top	_	14.83 cm^2	

Pst

soPst/100

=

=

_

0.2374,

0.0024

=

=

Hence tension steel at bottom=23.41-14.8 =8.58 cm2	Fy	= 500
However take 50% at bottom $=23.41/2$ $=11.71$	Pst	= 0.266
Hence total area of steel required at bottom will be	Fck	= 25
=11.71+15.73=27.43 cm2	В	= 1250.00
Provide 20mm, main bars, so the spacing will be	De	= 662.50
$=(3.142/27.43)\times1000=114.52$	So, 0.87xFy	= 435.00
OR	So. Pst/100	= 0.0027
Provide 25mm main bars, so the spacing will be	Fv/Fck	= 20.00
-(4.909/27.43)X1000-178.93	Bd2	- 548632813
HENCE PROVIDE 20 MM BARS AT 100 MM C/C	Hence Mu	- 0.87Eyy
OP	$(\text{Det}/100) \times [1, 1, 1 \times \text{Ev}/\text{Eelt}(\text{Det}/100)]$	= 0.871 yx
UN DROVIDE 25 MM DADS AT 160 MM C/C	(FSU100) X [1-1.1XFy/FCK(FSU100)]]002
PROVIDE 23 MINI DARS AT 100 MINI C/C	Mu/bu2 based off Pst	1.00
REINFORCEMENT AT TOP OF THE THRUST BED:	$= 435.00 \times 0.0027 (1.00 - 1.100 \times 20.00)$	(000027) = 1.09
Reinforcement required at top is=14.83 cm2	Mu/bd2 Based on BM	((2,50)) 1.00
By providing 16mm steel spacing required will be	$= (4/9.72 \times 100000)/(1000 \times 662.50)$	x662.50) = 1.09
$=(2.01/14.83)\times100=13.56$ cm	As both sides are equal Pst calculate	ed is OK
However provide 16mm bars at 130mm c/c	Pst required =	0.266
3.1.5.5 Distribution Steel	Hence area of steel =	125.00x66.25x0.00266
0.12% AS RINGS are provided to form a complete beam,	=	22.04
there is no need of distribution steel	Along with this steel there will be a	axial tension due to couple
However provide 0.12%	formed at pin pocket location.	
$(0.12 \times 100 \times 66.25)/100 = 7.95$	This will also be taken care by add	ditional steel provided for
On each face $=$ 3.98 cm2	pure tension inside the thrust bed	L
Inside the all, provide 10mm bars at 170mm c/c, through	Total required force =	159.91T
steel	Hence area of steel required for axi	al tension
Astprovided = $4.62 \text{ cm}^2 > 3.98 \text{ cm}^2$	$= (159.91 \times 1000 \times 1 \times 10)/(0.87 \times 415)$	
Hence safe	-4428 90sa mm -4429 sa cm	
	Hence areas required per meter will	he
2.1.6: Design of secondary thrust had for pushing of second	-44.20/1 - 44.20	
5.1.0. Design of secondary unust bed for pushing of second	-44.29/1 -44.29	d hattan of the threat had
box, casted benind first box	This steel will be divided at top and	a bottom of the thrust bed
3.1.6.1 Force per pin	1.e.,44.29/2=22.145	145.00.04
Thickness of Thrust Bed = 750.00 mm	Hence total area of steel will be= 22	2.145+22.04
Width of thrust bed = 10200.00 mm	= 44.19sq.cm	
Concrete grade = $M-25$	Provided 25mmmain barsno of bars	s required
Self-weight of box = 605.55 T,(ref Para 2.2)	=44.19/4.91x1.00=9.00	
Hence jacking force required = $605.55 \times 0.466 = 282.19$	However provide 25mm bars 10 no	'S
Jacking force required $= 282.19 \text{ T}$	Reinforcement at Top of Thrust Be	d:
As length of second box is less=605.55x11.00/11.00	The reinforcement required at top is	s =22.14 sq.cm
=605.55mt?	Hence provide 6 no's 20mm bars+3	3 no's 16mm bars
Force per meter of box on bottom force =605.55x1.70	Ast provided	=24.88cm>22.14cm
=1029.44	Hence safe	
Factored friction force will be=1029.44x0.466	3.1.7 Detailing in the Keys	
= 479.72	The keys are provided for additiona	al safety.
Hence factored force per pin wills be= $479.72/3.00$	Hence provide steel 10mm bars of	of 160 c/c as main links
=159.91	connecting to thrust bed, and	9 bars @8mm bars as
	distribution steel.	
3162: Jacking force	3 1 7 1 Design of Keys in Thrust Be	ed
Jacking force will be applied against jacking pin and jacking	Pressure at top of key –	30 31(ref Para 3 3(2))
nin will transfer the load inside the pocket as couple hance	Pressure at bottom of key $=$	54 56
-0.300	Max BM in key $-42.44 \times 0.60 \times 0.60$	0/2 00-7.64 T mts
Leading provided in the had in a row $arg = 2.00$	$Hanaa fastanad mamant = 1.70 \times 10$	0/2.00 = 7.04 T-mis
Jacking pins provided in the bed in a row are=5.00	Hence factored moment= 1.70x10.	120.96 ± 1.00
Jacking force per pin $=159.91$ I	Hence moment per meter will be=	129.80x1.00
Max BM for thrust bed $=159.91 \times 0.300 = 47.972 \text{ I} -\text{m}$	=129.86 KN-m	
Hence factored moment = $1.00 \times 10.00 \times 4/.9 = 4/9.72 \text{ KN-m}$	Effective depth of key = $600.00-87$.	.50 = 512.50
Hence moment per meter will be= $4/9.72/1.00=479.72$ KN-m	Reinforcement Calculation:	
3.1.6.3 Reinforcement Calculation	BM = 129.86K	N-m
BM = 479.72 KN-m	Effective depth = $600.00-50.00-12$.	50 = 537.50
Effective depth = $750.00-75.00-12.50=$ 662.50	To calculate Mu for given % of stee	el
Total calculated Mu for given % of steel	FY = 500	

D	0.106		
Pst =	0.106		
FCK =	25		U
B =	527.50)	T
De =	425.00		П 2
$S_{0,0.8/XFy} = S_{0,0.8/XFy} = -$	455.00) - C
$\frac{50, 150}{100} = \frac{1}{2}$	20.0011		
$P_{d2} = -288006250$	20.00		
Hence $M_{11} = -0.87 F_{VV} (P_{st}/1)$	$(00) \times [1_{-1}]$	1xEv/Eck(Pst/100)]bd2	H
Mu/bd2 Based on Pst	-435.00	$x_0 0011(1 00-$	Δ
$1 100 \times 20 00 \times 0 0011$	-0.45	0.0011(1.00	11
Mu/bd2 Based on BM	=0.45		Δ
$(129.86 \times 100000)/(1000)$	x537.50x	(537.50) = 0.45	11
Hence min steel can be	provided	orotherwise depth of key	С
can be reduced.	provided		B
Pst required	=	0.12	
Hence area of steel	=	100x53.75x0.00120	S
	=	6.45	
Hence provide 12mm bar	s at 160 c	c/c, through steel	U
Ast provided	=	7.07 cm2>6.45 cm2	
Hence safe.			Н
3.1.7.2 Design of Front C	utting Ed	ge:	С
The front cutting edge h	as been p	provided with face plate of	В
10mm with holdfast at th	ne time o	f casting of box. With this	
face plate cutting edge w	ill be wel	ded, and for support to the	S
cutting edge, stiffeners'	are provi	ded at 450 c/c at top, and	
450 c/c at bottom.			U
Plate thickness provided	at top	portion of cutting edge is	
20mm thick			Η
Plate thickness provided	at botton	n portion of cutting edge is	3.
16mm thick			3.
Plate thickness provided	at two sid	e portion of cutting edge is	S
16mm thick			L
Loads on Stiffener: Plate	on stiffe	eners will transfer the load	Ν
from top on to the stiffene	ers		L
Load on plates: DL+LL			Т
Intensity of load from des	sign of bo	X	
	=/55/.5	5+4035.03=11.59 1/mt ²	P
(ref Para 4.0 of box desig	n)		C
Loads on Stiffener: Plate	on stiffe	eners will transfer the load	C
to the stiffeners		11.50 T/m^2	I
Hence total intensity		11.59 1/mt	I
Design of Plates at Top a		in and Sides:	I D
As the cutting edge is	supporte	a on summerers and max	R D
At bottom spacing is	_	0.450 mts s/s	R D
At top spacing is	_	0.45 mts c/c	Г С
At top spacing is	_	0.43 mits c/c	
3 1 7 3 Check at Bottom	Cutting F	dae	
BM in cutting edge	-1150	uge 20 450×0 450/10	
Divi in cutting cuge	-11.397	$0.23 \text{ T}_{-\text{mt}}$	E
Section modulus required	_	$0.23 \times 100000/1500$	E
section modulus required	=	15.65	S
Using 16 mm thick plate	_ Z will he	1/6 bd2	R
come to min there plate	=	42.67 cm3>15.65 cm3	A
3.1.7.4Check At Top Cut	ting Edge	:	ta
BM in cutting edge	=	- 11.59x0.450x0.450/10	

0.23 T-mt

0.23x100000/1500

=

		15 (5	
	=	15.05	
Using 20mm thick plate, Z	will be	1/6 bd2	2
	=	66.67 cn	n3
lence OK			
.1.7.5 Design of Stiffener	s at Top,	Bottom a	and Sides
Check For Stiffeners:			
At bottom spacing is	=	0.450mt	s c/c
At top spacing is	=	0.45mts	c/c
Ience load on stiffeners w	ill be		
At top	=	11.59x0.	.45
1	=	5.22T	
At bottom	=	11.59x0	45
	=	5 22T	
beck At Top		0.221	
M in stiffeners	_	5 22 v 1 2	$250 \times 1.250/2$
Jui in sufferiers	_	1.08T m	250A1.250/2
action modulus required	_	4.001-11	0000/1500
section modulus required	=	4.08X10	0000/1300
	=	2/1./0	
Using 12mm thick plate, Z	will be	1/6 bd2	
	=	1125 cm	13
Ience OK			
Check At Bottom			
BM in stiffeners		=5.22x0	.600x0.600/2
		=0.94 T-	-mts
ection modulus required		=0.94x1	00000/1500
_		=62.60	
Jsing 10mm thick plate Z	will be 1	/6 bd2	
		=937.50	cm3
Jence OK			
2 Analysis of Precast Box	(Tunnel)	
2 1 Design data:	(1 united)	
iza of how single PCC pr	agest bo		7 50 v 5 650
angth of each how	ecast 00	A	7.50 X 5.050
Length of each box		_	22.00 mits
NO. OI segments		=	2.00
length of box unit-1		=	11.00 mts
op of bottom slab		=	101.257mts
roposed road level		=	101.407 mts
Clear length inside		=	7.50 mts
Clear height inside		=	5.650 mt
Thickness of top slab		=	0.750 mts
Thickness of bottom slab		=	0.750 mts
Thickness of end walls		=	0.750 mts
R.L. of top of box		=	107.657 mts
R.L. of formation level		=	108.232 mts
R.L. of rail level		=	108.907 mts
Sushion up to the formation	n	=	0 575 mts
but to out of hox		_	9.00 mts
Cotal height of the box		_	7 150 mts
Ve of outer to central well		_	8 250 mts
of or outer to certifiar Wall		_	6.40 mts
Affective mergine of the box		_	0.40 IIIIS 8 250 mtz
silective span of the box		=	8.250 mts
on parameters:			2 10 T /
Sulk density		=	2.10 T/cu.mts
Angle of internal friction		=	28.00 degrees,
aken as per soil report			

3.2.2 Design criteria

A: the design has been done as per railway standards and the

Section modulus required =

following codes		
Indian railway bridge rules		
Loading: H.M.LOADING (which is safe	e for 25 T	loading)
IRS bridge substructures & foundation c	code	
B: STRUCTURAL MATERAILS		
Reinforced concrete	=	box 35
Reinforcement: high yield bars Fy	=	500
N/mm2		
		DED IDC

METOD OF DESIGN: LIMIT STATE AS PER IRS LATEST CODE OF PROVISION.

3.0: Recapitulation of loads on box for analysis purpose

Load case	Dead loads	On top slab	On bottom slab	Left wall top	Left wall bottom	Right wall top
1	Dead wt of concrete	1875.0	4784.09			
2	Super imposed loads	2773.5	2773.5			
3	Earth pressure +DL surcharge			1190.92	5685.78	1190.92
4	Live loads	4035.0	4035.0			
5	L.L. Surcharge			1142.51	675.29	1142.51
6	Longitudinal forces			9016.22		2817.57

3.3 Design of Precast Box

3.3.1 Table of B.M at Corners and Mid Span for Members

All B.M. are in KN-m, with load factors as per IRS codal provision

As per IRS code moments are to be considered at face of support,

3.3.1.1 Recapitulation of Bending Moment

(1) Table of B.M. at corners and mid span for bottom slab

All B.M. are in KN-m, with load factors as per IRS codal provision

TABLE N0: 2 B.M. at Corners and Mid Span for Bottom Slab

Nodes	Lc.no		Max Design moments
Corner moments		Moments are at face of support	
Left of member :1	11	881.31	881.31
Right of member:2		644.28	
Corner moments	Vertical walls: at face of support		
Left of member :3	11	1095.00	1095.00
Right of member:4		851.50	
Mid Span Moments	MAX as per output		
Member no:1	11	978.66	978.66
Member no:2	11	819.00	
Member no:3	11	339.00	
Member no:4	11	475.00	

(2) TABLE for shear forces at corners: All the shear forces are in KN-m, with load factor as per IRS codal provisions

		-		
TABLE N0:3	Shear	Forces	at Corne	r

Nodes	Lc. No		Max design shear
Recapitulation of max SF for corners	Top & bottom slab(at face of wall)		Design Shear
Left of member :1	11	873.70	873.70
Right of member:2	11	649.90	
SFat	2.25 m from support		
Left of member :1	11	493.00	493.00
Right of member:2	11	269.00	

From the above data, Final DESIGN details of precast box are as follows:

3.3.2Reinforcement

3.3.2.1 Reinforcement Calculation	s for	Bottom Slab
Mu/bd2 based on Pst	=	2.30
Mu/bd2 based on B.M	=	2.30
As both sides are equal Pst calcula	ted is	ok

Pst	=	0.582
Ast provided	=	47.36 cm2
Pst	=	0.686, hence ok
Asv	=	351.80

Hence provide 10mm rings connecting 2 main bars 150 c/c As main bars provided 170 c/c no of legs in 1 m strip will be = 6 nos

Hence area of shear steel provided will be =6 x 78.54 =471.24>351.80

Check for shear after 2.25 m	from support	
SF at section	=	493.00KN
Shear stress V/bd	=	0.71
Asv	=	180.86

Asv = 180.86 Hence provide 8mm rings connecting 2 main bars @150 c/c As main bars are provided 170 c/c no of legs in 1m strip =6 nos

Hence area of shear stress provided will be

=6x 50.27=301.62>180.86

3.3.2.2 Reinforcement Calculation at Mid Span for Bottom Slab

Mu/bd2 based on Pst=2.092

Mu/bd2 based on B.M=2.092

As both sides are equal Pst calculated is ok

Pst=0.524

Ast provided=47.36 cm2

Pst=0.686, hence ok

Hence provide 20mm bars 170 c/c,through steel +25 mm bars at 170 c/c

Ast pro =47.36 cm2 hence ok

3.3.2.3 Reinforcement Calculation at Mid Span for Top Slab Mu/bd2 based on Pst= 1.751

Mu/bd2 based on B.M = 1.751

As both sides are equal Pst calculated is ok

Pst = 0.432

Hence provide 20mm bars 170 c/c, which are from vertical +20 mm bars at 170 c/c of top slab steel

Ast pro =36.96 cm2 hence ok

3.3.2.4Reinforcement Calculation at Mid Span for Vertical Wall

Mu/bd2 based on Pst =1.016

Mu/bd2 based on B.M =1.015

As both sides are equal Pst calculated is ok

Pst=0.243

Ast provided=28.8 cm2 hence ok

Hence provide 25mm bars 170 c/c, which are from vertical +25 mm bars at 170 c/c of top slab steel

Ast pro = 28.88 cm² hence ok

Design of vertical wall: as per cl. No:15.7.1.1 ,of IRS concrete bridge code, if axial force is less than 0.1 fckAc,the wall shall be treated as slab, and shall be designed accordingly.

Hence provide 16 mm bars @ 170 c/c through steel + 0mm bars @0 $\,$

Ast pro = 11.83 cm^2

3.3.3 Calculation for Steel along the Box with Pushing Force on Box

3.3.3.1 Vertical Loads

TABLE: 4 Vertical Loads

S.NO	LOADS DUE TO	LOAD
1	AT TOP OF BOX UNIT	273.24
2	AT BOTTOM OF BOX	878.79

3.3.3.2 Earth Pressure

(REF: cl-5.7 of IRS code for sub structure and foundation) Ka, as calculated in design of box = 0.3344Total load on the wall = 229.24 T

Total load on the wall = 22

Total pushing force required will be 878.00 T

4.4.3.3: Serviceability Limit State: Crack Width Calculations (Ref: cl: 15.9.8.2, of IRS code)

Design crack width =3 acrem/(1+2 (acr-cnom)/(h-dc))

=0.1784 mm<0.20 mm

(ref table: 10, of IRS concrete bridge code)

IV. CONCLUSION OF RESULTS

4.1Conclusion

- With the box pushing technique, there is no interruption to the traffic moving around.
- Better quality control due to the provision of precast boxes.
- Quantities will be less as compared to the conventional method of construction.
- The cost of construction is less as compared with the conventional method.

4.1.1 Precast box

- For the 7.5m span, we got the wall thickness as 750mm.
- For 6.4m clear height, we got the wall thickness as 750mm.

4.1.2 Thrust bed

- We have provided thickness of thrust bed 750mm for length of box 11m.
- The reinforcement details of precast box (tunnel), thrust bed is shown in the Drawing sheet.
- Various unexpected situations are likely to occur during the box pushing operations. Since the safety of running trains is directly affected, proper planning and implementation is essential for smooth completion of work. Advance analysis of site, likely problems that may arise and planning to tackle the same will help the executive for speedy and safe completion of the work.

V. FUTURE SCOPE OF WORK

- This was done for present need, for future expansions box can be extended cast-insitu as there are no tracks, thereby it can be done simpler & easier way, instead of present box pushing technique.
- The present work done is on RCC box, pre stressed concrete can also be done, thereby the reinforcement can be reduced greatly, and cost of PSC is more.

REFERENCES

- [1] Advanced Structural Analysis by Ashok k. Jain, New Channel Brothers.
- [2] Dynamics of Structures by Clough and Penzien

McGraw Hills, New York

- [3] Design of steel structures P.Dayaratnam, Publishers S.Chand Edition 2011-2012
- [4] Bridge Deck Behaviour by E.C. Hambly.
- [5] Design of concrete Bridges By M.G Aswini,V.N.Vazirani and M.M. Ratwani
- [6] Analysis of Bridge by STAAD Pro.
- [7] IS 456-2000
- [8] SP16:1984
- [9] IRS, IRC Codes.

M.A.RAHMAN Associate Professor Department of Civil Engineering Guru Nanak Institutions Hyderabad, Telengana.

G.RAJU Student of M.Tech Department of Civil Engineering Guru Nanak Institutions Hyderabad, Telengana.