UNIFIED POWER FLOW CONTROLLER WITH FUZZY LOGICS FOR REGULATION IMPROVEMENT AND FLUCTUATIONS IN A TRANSMISSION LINE MODEL

Mr. Anurag Tiwari¹, Mr. Sanjeev Jarariya², Mr. Vivek Koshta³

Abstract: UPFC is used to control both active and reactive power of the transmission system as it is implied with both series and shunt compensation techniques, hence a new approach of fuzzy logics is introduced in the shunt of the UPFC due in place of PI controller which reduces fluctuation, regulation and harmonic distortion resulting in increased power factor and increased load ability of transmission line. The simulation is carried on MATLAB.

Key words: UPFC, FLC, FACT devices, MATLAB

I. INTRODUCTION

Transient stability is the ability of power system to maintain synchronism when subjected to a severe disturbance, such as a fault on transmission facilities, sudden loss of generation, or loss of a large load. The system response to such disturbances involves large excursions of generator rotor angles, power flows, bus voltages, and other system variables. With the invent of Flexible Alternating Current Transmission(FACTS) devices based on power electronics, excellent operating experiences available world-wide, these devices are becoming more mature and more reliable to improve the performance of long distance AC transmission. FACTS controllers can be classified as (i) Variable impedance type controllers and (ii) Voltage source converter based controllers. This paper considered one of the FACTS devices UPFC. UPFC is the most versatile one that can be used to enhance steady state stability, dynamic stability and transient stability. The UPFC is capable of both supplying and absorbing real and reactive power and it consists of two ac/dc converters. One of the two converters is connected in series with the transmission line through a series transformer and the other in parallel with the line through a shunt transformer. The dc side of the two converters is connected through a common capacitor, which provides dc voltage for the converter operation. The power balance between the series and shunt converters is a prerequisite to maintain a constant voltage across the dc capacitor. As the series branch of the UPFC injects a voltage of variable magnitude and phase angle, it can exchange real power with the transmission line and thus improves the power flow capability of the line as well as its transient stability limit. The shunt converter exchanges a current of controllable magnitude and power factor angle with the power system. It is normally controlled to balance the real power absorbed from or injected into the power system by the series converter plus the losses by value [13]

II. CONTROL STRATEGY- UPFC

The Unified Power Flow Controller (UPFC) is the most versatile one that can be used to enhance steady state stability, dynamic stability and transient stability. The UPFC is capable of both supplying and absorbing real and reactive power and it consists of two ac/dc converters. One of the two converters is connected in series with the transmission line through a series transformer and the other in parallel with the line through a shunt transformer. The dc side of the two converters is connected through a common capacitor, which provides dc voltage for the converter operation. The power balance between the series and shunt converters is a prerequisite to maintain a constant voltage across the dc capacitor. As the series branch of the UPFC injects a voltage of variable magnitude and phase angle, it can exchange real power with the transmission line and thus improves the power flow capability of the line as well as its transient stability limit. The shunt converter exchanges a current of controllable magnitude and power factor angle with the power system. It is normally controlled to balance the real power absorbed from or injected into the power system by the series converter plus the losses by value [13]

III. UNIFIED POWER FLOW CONTROLLER

The Unified Power Flow Controller (UPFC) devised for the real-time control and dynamic compensation of ac transmission systems, providing multifunctional flexibility required to solve many of the problems facing the power delivery industry. The Unified Power Flow Controller (UPFC) consists of two voltage sourced converters, using gate turn-off (GTO) thyristor valves. These converters, labelled “Converter 1” and “Converter 2” in the figure 2.1, are operated from a common dc link provided by a dc storage capacitor. This arrangement functions as an ideal ac-to-ac power converter in which the real power can freely flow in either direction between the ac terminals of the two converters, and each converter can independently generate (or absorb) reactive power at its own ac output terminal [13].

![Figure 1: Understanding FACT devices from histogram MATLAB/SIMULINK WSCC model has been done. This paper considered three different conditions i.e. pre fault, with fault, and with UPFC (steady state, LLG fault, and after fault with UPFC).](image1)

![Figure 2: Unified power flow controller](image2)
IV. BASIC OPERATING PRINCIPLE OF UPFC
The Unified Power Flow Controller (UPFC) was devised for the real-time control and dynamic compensation of ac transmission systems, providing multi-functional flexibility required to solve many of the problems facing the power delivery industry.

V. MATLAB SIMULATION MODEL

A 230 kV, 100 MVA source is taken for a long transmission line of 800 km. The line resistance per unit length is considered as [0.01273 0.3864] ohms/km [N*N matrix] or [R1 R0 R0m] in per unit, the line inductance per unit length is [0.9337e-3 4.1264e-3] H/km [N*N matrix] or [L1 L0 L0m] and the line capacitance per unit length is [12.74e-9 7.751e-9] F/km [N*N matrix] or [C1 C0 C0m] for each 200 km length. In this long transmission line parallel R-L-C load is connected which is introduced in different steps as no load, half load and full load. UPFC is introduced in the middle of the line as the most nominal place in the T model of installation strategy.

VI. RESULT ANALYSIS:

ANALYSIS
1. Else in the figure 5.3 with fuzzy logic controller to a UPFC we found that sensitivity is increased i.e according to voltage drop in power transmission network the compensation required is sensed through fuzzy logic controller based UPFC and voltage can be injected for maintaining synchronism in the transmission network by maintaining proper voltage.
2. In the total harmonic distortion window showing FFT analysis it is seen that previously the THD is
reduced from 47.9 % to 43.67 %. THD is inversely proportional to power factor hence power factor is improved improving the transmission capacity of power with reduced losses.

3. Voltage regulation is improved as is seen in fig 5.1

4. Overshoots are reduced.

5. Fast response of the system.

VII. CONCLUSION

For the transmission of power through long distance over the line it is transmitted in high ratings and due to which due to sudden load or generator side disturbances compensation is required for maintaining the complete system in synchronism. While compensation now it is required to have fast responses and immediate controlled actions which can be done by using intelligent system of controlling. In this paper the same is done as the implementation of fuzzy logics are used in controlling the UPFC and it is seen that harmonic distortions are improved with fast settlement of the system.

REFERENCES

[1] Pouyan Pourbeik, Michael J. Gibbard’s [May 1998] analysis suggested by using the concept of induced torque coefficients developed in [7], a method is developed for the simultaneous coordination of power system stabilizers

[2] Ibrahim, Prabhat Kumar and Dwarka P. Kothari [FEBRUARY 2005] Have presented critical literature review and an up-to-date and exhaustive bibliography on the AGC of power systems.

[3] Ashwani Sharma, Saurabh Chanana, and Sanjoy Parida Have examined new methodology for combined optimal location of Thyristor Controlled Phase Angle Regulator (TCPAR) and Thyristor Controlled Series Compensator (TCSC) has been proposed using a mixed integer linear programming approach in the deregulated electricity environment.

[4] C. K. Panigrahi, Prof. P. K. Chattopadhyay, Prof. R.N. Chakrabarti [July 2005] have suggested that the restructuring of the electric power industry has involved paradigm shifts in the real time control activities of the power grids.

[5] Saurabh Chanana, and Ashwani Kumar [2006] have analyzed that in a deregulated power industry, the real time pricing of real and reactive power has emerged as an important issue to create fair open access in the electricity markets.

[6] Keshi Reddy, Saidi Reddy1, Narayana Prasad Padhy, and R. N. Patel [2006] have analyzed that congestion in the transmission lines is one of the technical problems that appears particularly in the deregulated environment. There are two types of congestion management methodologies to relieve it.

[7] Robert J. Kniss [FEB. 2006] The collapse of California’s electricity market has caused regulators in other states to reconsider their efforts to deregulate retail electricity markets. Significant progress has been made on the wholesale competition front but major challenges must still be confronted.

[8] Yixin Ni1, Kenny K.Y. Poon1, Haoming Liu2, Zhou Lan3, Haojun Zhu4, Lin Zhu4 have analyzed that Power system restructuring brings about new challenges to power system stability, especially the transient stability (TS) and small-signal stability (SS) of interconnected large-scale power systems under large and cascaded disturbances.

[9] M. A. Abido A. T. Al-Awami Y. L. Abdel-Magid [July 9-12, 2006] Have explained, the use of the supplementary controller of a unified power flow controller (UPFC) to damp low frequency oscillations in a weakly connected system is investigated.


[12] Meisam Hajizadeh, Javad Sadeh, [2011] Have explained to coordinate and regulate the flexible ac transmission systems (FACTS) and power system stabilizer (PSS) to increase damping in multi-machine power systems.

[13] Kian Hoong Kwan, Kuan Tak Tan, Ping Lam So[2012] Have explained that integration of a hybrid system that consist of a proton exchange membrane fuel cell (PEMFC) and an ultra-capacitor (UC) with the UPQC. Apart from performing load sharing with the grid

[14] Bagepall Sreenivas Theja, Anguluri Rajasekhar, Prof D.P. Kothari [December 16-19, 2012] Have explained an optimal co-ordinated tuned UPFC controller has been proposed to enhance the damping of low frequency oscillations in a single machine infinite bus power system.

[15] Ahmet Teke, Mehmet Emin Meral, Mehmet Uğraş Cuma1, Mehmet Tümay, Kamil Çağ atay Bayindir.[OCT 2012] Have analyzed that OPEN unified power quality conditioner (UPQC) offers different power quality levels with different electricity bill to their users. OPEN UPQC has more flexibility than traditional UPQC for field applications.

[16] M. Soliman [Sept. 2013] have explained that Robustness of Type-1 fuzzy logic power system stabilizers (FLPSSs) often lacks mathematical reasoning where the performance of such a stabilizer is often reviewed by transient response of the closed loop system.
Anurag Tiwari is Professor & Head, Department of Electrical & Electronics, Corporate Institute of Science & Technology Bhopal, Madhya Pradesh, India. He did B.E. in Electrical Engineering, and M.Tech. in Heavy electrical equipments from MANIT Bhopal. His area of expertise includes Power System and Control system. He has about more than one decade of teaching experience.

Sanjeev Jarariya has done his BE in ELECTRICAL ENGINEERING and completed his MTECH from MANIT Bhopal. He is an Asso.professor, Department of Electrical and Electronics in CORPORATE INSTITUTE OF SCIENCE AND TECHNOLOGY, BHOPAL. His area of expertise includes Electromagnetic theory and Electrical machines.

Vivek Koshta has done his BE in ELECTRICAL AND ELECTRONICS ENGINEERING and completed his MTECH in HIGH VOLTAGE ENGINEERING from GEC JABALPUR. He is an Asst.professor in CORPORATE INSTITUTE OF SCIENCE AND TECHNOLOGY BHOPAL and he has wide area of expertise in Academics in high voltage study and instrumentation.